教育宝

考研数学的难点总结 考研考试

学习经验 考研 https://www.jiaoyubao.cn/ | 手机站

2019年04月12日 17:27:50

考研数学中求极限一直是历年考研的难点和常考内容,每当题型发生变化时,很多同学都会显得力不从心。小编在这里为各位考生整理了求极限的11个方法,希望大家遇到极限的问题时,能不再苦恼。

  考研数学中求极限一直是历年考研的难点和常考内容,每当题型发生变化时,很多同学都会显得力不从心。小编在这里为各位考生整理了求极限的11个方法,希望大家遇到极限的问题时,能不再苦恼。
  为什么一章求极限如此重要?因为后续各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先对极限的总结如下,极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。
  1、极限分为一般极限,还有个数列极限
  区别在于数列极限是发散的,是一般极限的一种。
  2、解决极限的方法如下
  (1)等价无穷小的转化(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在),e的X次方-1或者(1 x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
  (2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先它的使用有严格的使用前提,必须是X趋近而不是N趋近(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷)。必须是函数的导数要存在(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)。必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
  3、泰勒公式
  (含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意)e^x展开,sinx展开,cos展开,ln(1 x)展开对题目简化有很好帮助。
  4、面对无穷大比上无穷大形式的解决办法
  取大头原大项除分子分母,看上去复杂处理很简单。
  5、无穷小与有界函数的处理办法
  面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
  6、夹逼定理
  (主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
  7、等比等差数列公式应用
  对付数列极限,q**值符号要小于1。

  8、各项的拆分相加
  来消掉中间的大多数,对付的还是数列极限,可以使用待定系数法来拆分化简函数。
  9、求左右求极限的方式
  (对付数列极限)例如知道Xn与Xn 1的关系,已知Xn的极限存在的情况下,Xn的极限与Xn 1的极限是一样的,应为极限去掉有限项目极限值不变化。
  10、两个重要极限的应用
  这两个很重要!对一、个而言是x趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)
  11、直接使用求导数的定义来求极限
  一般都是x趋近于0时候,在分子上f(x)加减某个值,加减f(x)的形式,看见了要特别注意,当题目中告诉你F(0)=0时,f(0)的导数=0的时候就是暗示你一定要用导数定义!不论极限怎么变,掌握了解题思路,就有了定式,希望同学们能够顺利解决极限难题。!

考研数学的难点总结 考研参考书目,如果你喜欢这篇文章,请将其保留版权转载。我的微信号(18560125702)欢迎来咨询,10年教培行业工作经验,如果你在考研方面有疑问,请与我联系,我将为您提供全面专业的选课帮助。返回教育宝头条

考研数学
选择MBA院校的方法有那些   mba考试

上一篇

选择MBA院校的方法有那些 mba考试

考研的4大优势 考研备考

下一篇

考研的4大优势 考研备考

【免责声明】本文仅代表作者本人观点,与教育宝无关。教育宝对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何保证。请读者仅作参考,特此声明!当您认为您的知识产权或其他合法权益被侵犯,或者页面信息有误需要纠正或者删除,请联系客服或致电400-601-2788。
推荐资讯