教育宝

高数六大常见题型全面分析 考研学习

学习经验 考研 https://www.jiaoyubao.cn/ | 手机站

2019年09月05日 17:50:31

今日小编为大家带来高数六大常见题型全面分析,一起来看看吧。

  今日小编为大家带来高数六大常见题型全面分析,一起来看看吧。
  求极限
  无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。
  区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!
  利用中值定理证明等式或不等式
  利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。
  等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。

  求导
  一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。
  一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
  级数
  级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与**收敛的本质含义均是考查的重点,但常常以小题形式出现。
  函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
  微分方程解常微分方程
  微分方程解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。
  但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要大家对方程与其通解、特解之间的关系熟练掌握。
  积分的计算
  积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。
  这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等。

好了,以上就是高数六大常见题型全面分析 考研学习的介绍,如对本文有疑问或者想了解更多考研信息,请与我们联系,我的微信18560125702。教育宝是一家教培行业第三方平台,5年以上工作经验的学习顾问能给你最客观公正的建议,帮你辨别课程好坏,为你提供学习帮助。返回教育宝头条

考研学习
瑜伽体式束角式有哪些好处 瑜伽练习

上一篇

瑜伽体式束角式有哪些好处 瑜伽练习

选择读博的研究生并不多的原因何在      考研学习

下一篇

选择读博的研究生并不多的原因何在 考研学习

【免责声明】本文仅代表作者本人观点,与教育宝无关。教育宝对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何保证。请读者仅作参考,特此声明!当您认为您的知识产权或其他合法权益被侵犯,或者页面信息有误需要纠正或者删除,请联系客服或致电400-601-2788。
推荐资讯